不定积分24个基本公式

1)∫0dx=c 不定积分的定义2)∫x^udx=(x^(u+1))/(u+1)+c 3)∫1/xdx=ln|x|+c 4)∫a^xdx=(a^x)/lna+c 5)∫e^xdx=e^x+c 6)∫sinxdx=-cosx+c 7)∫cosxdx=sinx+c 8)∫1/(cosx)^2dx=tanx+c 9)∫1/(sinx)^2dx=-cotx+

您好,很高兴为您解答!基本积分表共24个公式:∫ kdx = kx + C (k是常数e69da5e887aa3231313335323631343130323136353331333330363736 ) x ∫ x dx = + 1 + C , ( ≠ 1) +1dx ( 3) ∫ = ln | x | + C x1 ( 4) ∫ dx = arctan x + C 2 1+ x

1)∫kdx=kx+c 不定积分的定义 2)∫x^udx=(x^(u+1))/(u+1)+c 3)∫1/xdx=ln|x|+c 4) ∫a^xdx=(a^x)/lna+c 5)∫e^xdx=e^x+c 6)∫sinxdx=-cosx+c 7)∫cosxdx=sinx+c 8)∫1/(cosx)^2dx=tanx+

原发布者:xhj1017 常见不定积分公式 1)∫0dx=c 2)∫x^udx=(x^u+1)/(u+1)+c 3)∫1/xdx=ln|x|+c 4))∫a^xdx=(a^x)/lna+c 5)∫e^xdx=e^x+c 6)∫sinxdx=-cosx+c 7)∫cosxdx=sinx+c 8)∫1/(cosx)^2dx=tanx+c 9)∫1/(sinx)^2dx=-cotx+c 10)∫1/√(1-x^2) dx=

在微积分中积分是微分的逆运算,即知道了函数的导函数,反求原函数.在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求

1)∫0dx=c 不定积分的定义2)∫x^udx=(x^(u+1))/(u+1)+c 3)∫1/xdx=ln|x|+c 4)∫a^xdx=(a^x)/lna+c 5)∫e^xdx=e^x+c 6)∫sinxdx=-cosx+c 7)∫cosxdx=sinx+c 8)∫1/(cosx)^2dx=tanx+c 9)∫1/(sinx)^2dx=-cotx+c 10)∫1/√(1-x^2) dx=arcsinx+c 11)∫1/(1+x^2)dx=

不定积分公式为:在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ = f.不定积分和定积分间的关系由微积分基本定理确定,其中F是f的不定积分.根据牛顿-莱布尼茨公式,许多函数的定积分的计算

不定积分公式:∫f(x)dx=F(x)+C.其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数不定积分的过程叫做对这个函数进行积分.不定积分的积分公式主要有如下几类:含ax+b的积分、含√(a+bx

常用的积分du公式有f(x)->∫f(x)dxk->kxx^n->[1/(n+1)]x^(n+1)a^x->a^x/lnasinx->-cosxcosx->sinxtanx->-lncosxcotx->lnsinx拓展资料积分公式主要有如下几类:含ax+b的积zhi分、含√dao(a+bx)的积分、含有版x^2±α^2的积分、含有ax^2+b(a>0)的积分、含有√(a+x^2) (a>0)的积分、含有√(a^2-x^2) (a>0)的积分、含有√(|a|x^2+bx+c) (a≠0)的积分、含有三角函数的积分、含有反三角函数的积分、含有指数函数的积分、含有对数函数的积分、含有双权曲函数的积分.

相关文档

不定积分基本公式
24个不定积分公式顺口溜
147个不定积分公式
arctanx的不定积分
50个常用不定积分公式表
不定积分经典例题100个
基本积分表24个公式
不定积分必背公式
不定积分公式运算法则
分部积分法
微积分入门基本公式
基本积分公式表
微分公式大全24个
不定积分和定积分的区别
不定积分运算法则
不定积分24个基本公式图片
不定积分换元法技巧
不定积分分部积分法
电脑版