勾股定理的证明方法

一,毕达哥拉斯证法二,赵爽证法三,将直角三角形与其它三角形拼成直角梯形,然后就根据梯形面积证出勾股定理.

【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个

魅力无比的定理证明 勾股定理的证明 勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家

最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽.赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明.在这幅“勾股圆方图”中,以弦为边长玫秸 叫BDE是由4个相等的直角三角形再加上

刘徽在证明勾股定理时,也是用的以形证数的方法,只是具体的分合移补略有不同.刘徽的证明原也有一幅图,可惜图已失传,只留下一段文字:“勾自乘为朱方,股自乘为

1.中国方法:画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边.这两个正方形全等,故面积相等. 左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等.从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等.左图剩下两个正方形,分别以a、b为边.右图剩下以c为边的正方形.于是 a^2+b^2=c^2. 这就是我们几何教科书中所介绍的方法.既直

魅力无比的定理证明 勾股定理的证明 勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统.也许是因

两直角边平方和等于斜边平方 a2+b2=c2(2为平方) 早在公元前11世纪的西周初期,数学家商高曾与辅佐周成王的周公谈到直角三角形具有这样的一个性质:如果直角三角形的两个直角边分别为3和4,则这个直角三角形的斜边为5.利用商高的方

这个定理有许多证明的方法,其证明的方法可能是数学众多定理中最多的.路明思(Elisha Scott Loomis)的 Pythagorean Proposition( 《毕达哥拉斯命题》)一书中总共提到367种证明方式. 有人会尝试以三角恒等式(例如:正弦和余弦函数的泰勒级数)来证明勾股定理,但是,因为所有的基本三角恒等式都是建基于勾股定理,所以不能作为勾股定理的证明(参见循环论证).

数学是一门古老的科学,很多人都很喜欢她.我也一样,我把数学看成是一种文化和艺术.虽然不是所以的人都能专研那些高深的数学知识,但是她还是有一些雅俗共赏的地方的.比如说再谈到勾股定理的时候,很多人在中学的时候都学过.

相关文档

勾股定理的计算方法
初二勾股定理证明方法
勾股定理顺口溜
勾股定理最快的算法
勾股定理思维导图
毕达哥拉斯勾股定理证法
初二数学勾股定理公式
勾股定理例题50道
wkbx.net
gmcy.net
zxtw.net
ntjm.net
369-e.com
电脑版